Vamos ao Cern da questão

O bóson de Higgs é a unidade fundamental de um mecanismo que explica como as partículas ganham massa (Foto – Hemera – Thinkstock)
Antes que alguém comente sobre a “falta de um e” no título do post, explico que se trata do Centro Europeu de Pesquisa Nuclear – a sigla CERN é em francês.
Deixemos de lado os politiqueiros e fingidores de justiça e vamos ao Cern.
O blog reproduz as informações sobre a histórica descoberta:
Para a humanidade foi muito importante o anúncio que cientistas fizeram na manhã de quarta-feira (4 de julho). Descobriram a existência de uma nova partícula subatômica que se comporta como o bóson  de Higgs. Ao colidir prótons, pesquisadores do CMS e do ATLAS – dois grupos de pesquisa que trabalham de forma independente em busca do bóson de Higgs  – conseguiram criar no Grande Colisor de Hádron, no Centro Europeu de Pesquisa Nuclear (o Cern, na sigla em francês), em Genebra, uma partícula com massa de 125,3 Gev.
A nova partícula está na região de massa 125-126 GeV. A observação do ATLAS foi em 126 GeV e a do CMS em 125 GeV. A medida GeV é o padrão para  a massa das partículas subatômicas. Um GeV é equivalente a massa aproximada de um próton.
Vamos à explicação:
Até o início da década de 1970, o conhecimento humano do mundo subatômico era desorganizado. Havia muitas teorias – modelo quark, teoria Regge, de Calibre, Matriz-S, entre outras –, prevendo centenas de partículas e complexas relações entre elas. Mas elas só conseguiam explicar pequenos pedaços da realidade. “Não estava claro qual modelo era o correto”, escreveu o físico britânico Stephen Wolfram na revista americana Wired. “Algumas teorias pareciam vazias, outras eram profundas e filosóficas. Algumas eram sofisticadas, e outras, entediantes.”
As peças do modelo — No início da década de 1970, contudo, uma teoria se destacou. Nessa época os cientistas confirmaram a existência dos quarks, partículas que constituem os prótons e os nêutrons, elementos que formam o núcleo dos átomos. Essa descoberta deu força a uma teoria que viria a ser conhecida como Modelo Padrão da Física de Partículas — que previa a existência de 12 tipos de partículas elementares, suportadas por um campo que confere massa a algumas delas (como o elétron), mas não a outras (como o fóton).
O pontapé inicial para a confecção do Modelo Padrão foi dado em 1960, quando o físico americano Sheldon Glashow descobriu uma forma de combinar a força eletromagnética e as interações fracas dos átomos, duas das quatro forças fundamentais (as outras são as interações fortes dos átomos e a gravidade).
Sete anos mais tarde, Steven Weinberg e Abdus Salam afundiram as ideias de Glashow às do físico escocês Peter Higgs. Em 1964, Higgs propôs a existência de um campo com o qual as partículas interagem. Essa interação confere massa às partículas. As que não interagem com o campo de Higgs não possuem massa e estão fadadas a viajar para sempre na velocidade da luz, como os fótons, a unidade básica da luz. A unidade básica desse campo foi batizada com o nome do físico: bóson (nome dado às partículas que ‘transportam’ energia) de Higgs.
Entre 1972 e 1974 experimentos confirmaram a teoria da interação forte entre as partículas (mais uma das quatro forças fundamentais). A descoberta deu ao Modelo Padrão sua forma atual e valeu a Glashow, Salam e Weinberg o Nobel de Física de 1979.
A teoria de ‘quase tudo’ — Os cientistas usaram o Modelo Padrão para prever a existência de várias partículas que ainda não haviam sido verificadas na prática, e ele não decepcionou. A um custo de bilhões de dólares, foram construídos aceleradores de partículas, como o Fermilab, nos Estados Unidos e o LHC, na fronteira franco-suíça. A descoberta do quark bottom em 1977, o quark top em 1995 e o tau neutrino em 2000 deram ainda mais crédito ao Modelo Padrão, fazendo dele a melhor teoria para explicar ‘quase tudo’. Com ele, é possível explicar com sucesso uma grande variedade de resultados experimentais, exceção feita ao comportamento da gravidade, da matéria e da energia escuras e da antimatéria.
A partícula derradeira — De todas as partículas previstas pelo Modelo Padrão, apenas uma não havia sido verificada em experimentos: o bóson de Higgs. Sua verificação tornou-se, portanto, uma questão de honra para os teóricos. Mas não foi fácil. Os primeiros aceleradores de partícula não foram capazes de encontrá-lo. Nem os de segunda geração. Foi preciso investir 10 bilhões de dólares para a construção do Large Hadron Collider, um gigantesco anel de 27 quilômetros de diâmetro na fronteira franco-suíça, potente o suficiente para esmagar prótons a uma velocidade próxima a da luz e oferecer as condições para procurar o bóson de Higgs em regiões energéticas desconhecidas até então pela ciência. Embora não fosse seu único objetivo, a busca pelo bóson de Higgs é a principal vitrine do LHC e o principal argumento para convencer governos a gastar dinheiro público em um empreendimento de ambições puramente teóricas.
Peter Higgs, o ‘pai’ do bóson de Higgs, na Universidade de Edimburgo, na Escócia
A próxima jornadaA longa espera chegou ao fim nesta quarta-feira. Isso explica o entusiasmo com que cientistas ao redor do planeta programaram encontros festivos para receber o anúncio do pesquisadores do LHC. O próprio Peter Higgs foi convidado para o anúncio. Após os resultados, disse aliviado. “Acho que o encontramos”. Em uma coletiva de imprensa na Escócia, nessa sexta-feira, disse algo que estava engasgado há mais de 40 anos. “É muito bom estar certo.”
No Brasil, a Universidade Estadual Paulista (Unesp) organizou uma espécie de ‘café da madrugada’, com suco e salgadinhos para professores,  estudantes e jornalistas na sala de computação do campus da Barra Funda, em São Paulo. Um telão exibia ao vivo o anúncio dos cientistas do  LHC. Físicos brasileiros, como Sérgio Novaes e Hélio Takai, um em Genebra e outro em Nova York, vibraram com os resultados. “É, sem dúvida, o resultado mais importante dos últimos 30 anos na Física de Partículas”, disse Novaes, emocionado, por teleconferência. Líder de um grupo de pesquisa da Unesp, Novaes trabalha em um dos experimentos que detectaram o bóson de Higgs e publicou — no início da década de 1980 — um dos primeiros artigos que descreviam como encontrar a partícula.
Saiba mais
MODELO PADRÃO
O Modelo Padrão é a melhor descrição do mundo subatômico. Existem outras, mas nenhuma que tenha tido tanto sucesso em experimentos para prever e descrever as partículas e as forças de suas interações. O Modelo Padrão oferece ferramentas teóricas para o avanço de tecnologias. A cura do câncer ou a construção de uma nave interestelar passam, em última análise, pelo sucesso de um modelo que descreva o comportamento da natureza no mais fundamental dos níveis.
BÓSON DE HIGGS
O bóson de Higgs é uma partícula subatômica prevista há quase 50 anos. Após décadas de procura, os físicos ainda não conseguiram nenhuma prova de que ela exista. O Higgs é importante porque a existência dele provaria que existe um campo invisível que permeia o universo. Sem o campo, ou algo parecido, nada do que conhecemos existiria. Os cientistas não esperavam detectar o campo, mas sim uma pequena deformação nele, chamada bóson de Higgs.

3 pensamentos sobre “Vamos ao Cern da questão

  1. Gosto do ecletismo desse blog. São muitos diferentes. Esse do CERN é ótimo. E a qualidade dos textos, das reportagens e das imagens dos posts é excelente.

  2. Pingback: `,,´__ big brown … !!! « falandonalata1

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s